- #36
Jimmy87
- 686
- 17
PeterDonis said:Basically, yes, but with some clarifications. If you plot ##\Psi## as a function of ##x##, you are plotting the values you get when you evaluate the function ##\Psi(x)## for each different value of ##x##. Which function ##\Psi(x)## that is will depend on what value you pick for ##p##--or, more generally, what kind of wave function you want to work with (functions of the form ##Ae^{ipx}##--leaving out the factor ##\hbar## for simplicity--are not the only possible kinds of wave functions).
Similarly, if you plot ##\Psi## as a function of ##p##, you are plotting the values you get when you evaluate the function ##\Psi(p)## for each different value of ##p##. Which function ##\Psi(p)## that is will depend on what kind of wave function you want to work with.
The relationship between the functions ##\Psi(x)## and ##\Psi(p)## is that they are Fourier transforms of each other. In the case we are working with, where the function ##\Psi(x)## is ##A e^{ipx}##, the corresponding function ##\Psi(p)##, obtained by Fourier transforming ##\Psi(x)##, is ##\delta(p)##, where ##\delta## stands for the Dirac delta function. (Which is not actually a "function", strictly speaking--but for our purposes here we can think of it as one, which is zero for any value of momentum except the single value ##p##.)
So if you draw a graph of your ##\Psi(x)##, for some particular value of ##p##, you will find that it looks like a "corkscrew" winding around the ##x## axis (think of stacking an infinite series of complex planes, one for each value of ##x##, and plotting the complex value of ##\Psi(x)## for each value of ##x## in the plane corresponding to that value of ##x##). The particular value of ##p## that you pick determines how tightly the corkscrew winds--the higher the value of ##p##, the tighter the windings (i.e., the more closely spaced they are).
And if you draw a graph of the ##\Psi(p)## that corresponds to the above ##\Psi(x)##, you will find that it is a single "spike" at a particular value of ##p## on the ##p## axis--everywhere else it is zero.
Perfect - thank you! I understand that now. Thanks for all your help (and patience). One final question if you could - when you find the complex value of the wavefunction what position 'x' do you actually put it? Is it a number measured in metres for example? If so, how would you define its position? If you put in 1mm for example - you would have to put in some framework for what 1mm means wouldn't you? I have seen wavefunctions in terms of confined in a box but how do you relate the 'x' to where exactly your looking because 1mm could mean anything.