- #1
C Roth
- 3
- 1
- TL;DR Summary
- How can we understand chaotic movement and temperature in a phonon? How is it affected by the waves of the phonon?
My first question here, so maybe not adequate or in the wrong topic, excuse me. I try to understand vibrating light harvesting antenna in biochemistry but it is a question of physics. We talk about a molecule with an emission spectra peak of about 650 nm.
In classical physics electrostatic and electrodynamic forces would let the electrons of a given molecule interact with each other in a rapid "for- and backward" movement in that molecule. That movement of the molecule may be more difficult to describe, but for the sake of discussion we stay with a likely constant linear extension and contraction of a chain like molecule, agitated by light. Because of the three (and more) body problem we are not able to predict those movements of the electrons, we just know that there is interaction, because of repulsion and the electric and magnetic fields created by the moving and spinning charges.
Now imagine the molecule as a wave (phonon). Isn't its rapid movement agitated by light influencing the chaotic movement of temperature and the electrons? The movements of the electrons could be seen as waves which interfere and resonate with the basic frequency of the phonon (molecule) and its multiples as in the Kuramoto model, couldn't it? So they would constantly get slightly redirected depending on their actual interfering or resonating waveform. Therefore couldn't it change the Boltzmann factor which depends on the temperature (as a measure for a probability distribution)?
Thank You
In classical physics electrostatic and electrodynamic forces would let the electrons of a given molecule interact with each other in a rapid "for- and backward" movement in that molecule. That movement of the molecule may be more difficult to describe, but for the sake of discussion we stay with a likely constant linear extension and contraction of a chain like molecule, agitated by light. Because of the three (and more) body problem we are not able to predict those movements of the electrons, we just know that there is interaction, because of repulsion and the electric and magnetic fields created by the moving and spinning charges.
Now imagine the molecule as a wave (phonon). Isn't its rapid movement agitated by light influencing the chaotic movement of temperature and the electrons? The movements of the electrons could be seen as waves which interfere and resonate with the basic frequency of the phonon (molecule) and its multiples as in the Kuramoto model, couldn't it? So they would constantly get slightly redirected depending on their actual interfering or resonating waveform. Therefore couldn't it change the Boltzmann factor which depends on the temperature (as a measure for a probability distribution)?
Thank You