- #1
Kashmir
- 468
- 74
If
##\psi(x, t)=\left(\frac{1}{2 \pi \alpha^{2}}\right)^{1 / 4} \frac{1}{\sqrt{\gamma}} e^{i p_{0}\left(x-p_{0} t / 2 m\right) / \hbar} e^{-\left(x-p_{0} t / m\right)^{2} / 4 \alpha^{2} \gamma}##where
* ##\gamma=1+\frac{i t}
{\tau}##( a complex number)
* ##\tau=\frac{m h}{2 \beta^{2}}##McIntyre says
" ... this wave packet has a carrier wave part that is characterized by ##p_{0}## and propagates at the phase velocity ##p_{0} / 2 \mathrm{~m}##, and an envelope part that is characterized by the momentum width ##\beta## (through the ##\alpha## parameter) and propagates at the group velocity ##p_{0} / \mathrm{m}##. As we expected, the envelope is a Gaussian function"
I'm not able to understand how the wavefunction has a carrier and an envelope part.
Can anyone help me with this.
##\psi(x, t)=\left(\frac{1}{2 \pi \alpha^{2}}\right)^{1 / 4} \frac{1}{\sqrt{\gamma}} e^{i p_{0}\left(x-p_{0} t / 2 m\right) / \hbar} e^{-\left(x-p_{0} t / m\right)^{2} / 4 \alpha^{2} \gamma}##where
* ##\gamma=1+\frac{i t}
{\tau}##( a complex number)
* ##\tau=\frac{m h}{2 \beta^{2}}##McIntyre says
" ... this wave packet has a carrier wave part that is characterized by ##p_{0}## and propagates at the phase velocity ##p_{0} / 2 \mathrm{~m}##, and an envelope part that is characterized by the momentum width ##\beta## (through the ##\alpha## parameter) and propagates at the group velocity ##p_{0} / \mathrm{m}##. As we expected, the envelope is a Gaussian function"
I'm not able to understand how the wavefunction has a carrier and an envelope part.
Can anyone help me with this.