- #1
NiRK20
- 2
- 0
- Homework Statement
- Basically, I have the wavefunction of a particle with spin (not necessarly 1/2) given by ##\psi(\textbf{r}, m) = \psi _{m} (\textbf{r}) = \langle\textbf{r}, m|\psi \rangle##. My task is to find the wavefunction of a rotated state ##U(R)|\psi \rangle##, with ##U## being the product of a spacial rotation by a spin rotation.
- Relevant Equations
- -
Since ##U## is a space and spin rotation, it would be
$$U(R) = e^{-i\textbf{L}\cdot \hat{\textbf{n}}\phi/\hbar}\cdot e^{-i\textbf{S}\cdot \hat{\textbf{n}}\phi/\hbar}$$
And, then
$$\psi'(\textbf{r}, m) = \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\psi \rangle = \sum_{m'}\int \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\textbf{r}', m'\rangle\psi _{m'}(\textbf{r}') d^{3}r'$$
The problem is where to go from here (if this is right until now). There is a way to compute these matrix elements? Does ##|\textbf{r}\rangle## equals to the eigenkets of angular momentum ##|nlm\rangle##?
$$U(R) = e^{-i\textbf{L}\cdot \hat{\textbf{n}}\phi/\hbar}\cdot e^{-i\textbf{S}\cdot \hat{\textbf{n}}\phi/\hbar}$$
And, then
$$\psi'(\textbf{r}, m) = \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\psi \rangle = \sum_{m'}\int \langle\textbf{r}, m|e^{-i\phi(\textbf{L} + \textbf{S}) \cdot \hat{\textbf{n}}/\hbar}|\textbf{r}', m'\rangle\psi _{m'}(\textbf{r}') d^{3}r'$$
The problem is where to go from here (if this is right until now). There is a way to compute these matrix elements? Does ##|\textbf{r}\rangle## equals to the eigenkets of angular momentum ##|nlm\rangle##?