Wavelet transform (CWT and DWT)

AI Thread Summary
Wavelet transforms, specifically Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT), involve computing inner products between a signal and wavelets at various scales and translations. The DWT utilizes a bank of low-pass and high-pass filters to produce approximation and detail coefficients, which represent the signal's decomposition into wavelet and scaling functions. The coefficients are essential for reconstructing the signal and understanding its frequency content, with the spectrogram being limited by the wavelet's frequency range. The discussion also highlights the distinction between CWT and DWT, particularly regarding the absence of a father wavelet in CWT, which focuses solely on the mother wavelet's scaled and shifted versions. Understanding the relationship between these components is crucial for effective signal analysis using wavelets.
fog37
Messages
1,566
Reaction score
108
Hello,
I recently got interested in wavelets. The main idea seems clear: we compute the inner product between the signal ##x(t)## and a chosen wavelet for different scale factors and translations of the wavelet over the signal. The inner product provides the coefficient for a wavelet with a specific scale factor ##a##, which is inversely related to the wavelet frequency ##f##, as we translated the wavelet over ##x(t)##.

Apparently, given a discrete signal ##x(t)##, we can calculate either its continuous wavelet transform CWT and its discrete wavelet transform (DWT). Both are transforms are discrete in the sense that the scale parameter and translation parameter have a finite numbers of values...

My question: the DWT can be represented as a bank of low-pass and high-pass filters. We send the signal ##x(t)## into the first pair of filter and then pass its downsampled low-pass versions into subsequent filter pairs This process apparently produces approximation and detail coefficients...I am not clear on this process...What do we do with the approximation and detail coefficients? Is the signal decomposed into a weighted sum of wavelet functions plus a weighted sum of scaling functions?

We end up with a single downsampled low-pass version of the input signal and two downsampled high-pass versions....How does that relate to obtaining a spectrogram ##F(\omega, t)## of the input signal ##x(t)##?

1709516194114.png


Thank you!
 
Engineering news on Phys.org
If I'm not mistaken, the coefficients are displayed over a set band of frequencies (the wavelet). Whereas, Fourier displays the amplitude of the entire spectrum of frequencies. So, your spectrogram would be limited by the wavelet.
 
osilmag said:
If I'm not mistaken, the coefficients are displayed over a set band of frequencies (the wavelet). Whereas, Fourier displays the amplitude of the entire spectrum of frequencies. So, your spectrogram would be limited by the wavelet.
My understanding is that the detail and approximation coefficients will be the coefficients which will multiply the scaling (father) wavelets and the mother wavelets. The filters above are all bandpass filters with different frequency ranges....

I am not sure why the CWT, which is also discrete in the scale parameter ##a## and translation parameter ##\tau##, does not need the father wavelet....Any idea?
 
I guess I would say that once you have down or up sampled the signal, you have moved on to a different wavelet, with different a and t values. I would agree with you that it is a weighted sum of wavelet functions with their scalar coefficient.
 
osilmag said:
I guess I would say that once you have down or up sampled the signal, you have moved on to a different wavelet, with different a and t values. I would agree with you that it is a weighted sum of wavelet functions with their scalar coefficient.
Thank you!

And what is your intuition about the filters corresponding to scaled and shifted mother wavelets?
How do you factor in the father wavelet (scaling function) which is not present in the CWT that is only based on assembling the signal as a superposition of scaled and shifted mother wavelets (the daughter wavelets)?
 
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top