- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Mmm)
This:
$$\subseteq_{\mathcal{P}A}=\{ <X,Y> \in (\mathcal{P}A)^2: X \subset Y\}$$
is a partial order of the power sets $\mathcal{P}A$.
But, we have to take attention to the following fact:
We cannot define an order over all the sets because if $R=\{ <X,Y>: X \subset Y \}$ is a set, then if $X=\varnothing$ we have that for each set $Y$, $\varnothing \subset Y$. Therefore $rng(R)=\{ Y: Y \text{ set } \}$ is a set.
Contradiction.
Could you explain me what is meant? I haven't understood it.. (Worried)
This:
$$\subseteq_{\mathcal{P}A}=\{ <X,Y> \in (\mathcal{P}A)^2: X \subset Y\}$$
is a partial order of the power sets $\mathcal{P}A$.
But, we have to take attention to the following fact:
We cannot define an order over all the sets because if $R=\{ <X,Y>: X \subset Y \}$ is a set, then if $X=\varnothing$ we have that for each set $Y$, $\varnothing \subset Y$. Therefore $rng(R)=\{ Y: Y \text{ set } \}$ is a set.
Contradiction.
Could you explain me what is meant? I haven't understood it.. (Worried)