- #1
joypav
- 151
- 0
Problem:
Let $X_n$ be independent random variables such that $X_1 = 1$, and for $n \geq 2$,
$P(X_n=n)=n^{-2}$ and $P(X_n=1)=P(X_n=0)=\frac{1}{2}(1-n^{-2})$.
Show $(1/\sqrt{n})(\sum_{m=1}^{n}X_n-n/2)$ converges weakly to a normal distribution as $n \rightarrow \infty$.Thoughts:
My professor sent this problem over email and I am first off wondering about the notation. I think that the last line is meant to read $(\frac{1}{\sqrt{n}})(\frac{\sum_{m=1}^{n}X_m-n}{2})$? (I assume the summation index was simply a typo and that it is all over 2 not just the n?)
If that is the case, then I am thinking this is a consequence of the Central Limit Theorem.
Which has conclusion,
$\frac{S_n - \mu n}{\sigma \sqrt{n}} \implies \chi$
where $\chi$ is $N(0,1)$.
Let $X_n$ be independent random variables such that $X_1 = 1$, and for $n \geq 2$,
$P(X_n=n)=n^{-2}$ and $P(X_n=1)=P(X_n=0)=\frac{1}{2}(1-n^{-2})$.
Show $(1/\sqrt{n})(\sum_{m=1}^{n}X_n-n/2)$ converges weakly to a normal distribution as $n \rightarrow \infty$.Thoughts:
My professor sent this problem over email and I am first off wondering about the notation. I think that the last line is meant to read $(\frac{1}{\sqrt{n}})(\frac{\sum_{m=1}^{n}X_m-n}{2})$? (I assume the summation index was simply a typo and that it is all over 2 not just the n?)
If that is the case, then I am thinking this is a consequence of the Central Limit Theorem.
Which has conclusion,
$\frac{S_n - \mu n}{\sigma \sqrt{n}} \implies \chi$
where $\chi$ is $N(0,1)$.