- #1
Kate2010
- 146
- 0
Homework Statement
0<p<1
Suppose [tex]\sum[/tex][tex]^{infinity}_{k=0}[/tex] p(p-1)...(p-k+1)(-1)k/k(k-1)...1 is convergent.
Show that [tex]\sum[/tex][tex]^{infinity}_{k=0}[/tex] p(p-1)...(p-k+1)(x)k/k(k-1)...1 is uniformly convergent on [-1,0]
Homework Equations
The Attempt at a Solution
I have shown that p(p-1)...(p-k+1)(-1)k/k(k-1)...1 < 0 for k=1,2,3,...
[tex]\sum[/tex][tex]^{infinity}_{k=0}[/tex] p(p-1)...(p-k+1)(-1)k/k(k-1)...1 = L (< 0) as it converges to a limit.
|(-1)krk|[tex]\leq[/tex] rk for r<1 and -1<x[tex]\leq[/tex]0
However, I do not know how to tackle the case when x=-1.