- #1
binbagsss
- 1,305
- 11
Homework Statement
Let ##{w_1,w_2} ## be a basis for ##\Omega## the period lattice.
Use ##\zeta (z+ w_{i})=\zeta(z)+ n_i## , ##i=1,2## ; ## m \in N## for the weierstrass zeta function to show that
##\sigma ( z + mw_i )=(-1)^m \exp^{(mn_i(z+mwi/2))}\sigma(z)##
Homework Equations
[/B]
To note that ##\sigma(z)## is an odd function.
##\zeta(z)=\frac{\sigma'(z)}{\sigma(z)}##
The Attempt at a Solution
[/B]
I am pretty close but messing up with not getting ##(-1)^m##
From ##\zeta (z+ w_{i})=\zeta(z)+ n_i## I get ##\zeta (z+ mw_{i})=\zeta(z)+ mn_i## .
##\frac{d}{dz} \log \sigma(z+mw_i) = \frac{d}{dz} \log \sigma(z) + mn_i##
## \sigma(z+mw_i) = \sigma(z)\exp{mn_i z} A ## , ##A## a constant of integration.
And now to determine ##A## I use the oddness of ##\sigma(z)## (odd as in odd function..) by setting ##z=\frac{-mw_i}{2}##:
##\sigma(\frac{mw_i}{2})=\sigma(\frac{-mw_i}{2})A\exp^{-m^2n_iw_i/2}##
##\implies A= - \exp^{\frac{m^2n_iw_i}{2}}##
## \sigma(z+mw_i) = - \sigma(z)\exp{mn_i (z+mw_i/2)} ##
So I have a minus sign rather than ##(-1)^m## could someone please tell me what I have done wrong?
Many thanks in advance.