- #1
Pull and Twist
- 48
- 0
Here's what I am trying to evaluate...
\(\displaystyle \int_{0}^{2}z^2lnz\,dz\)
This is what I did...
\(\displaystyle \lim_{{t}\to{0}}\int_{t}^{2}z^2lnz \,dz\)
Then using integration by parts...
\(\displaystyle u=\ln\left({z}\right)\)
\(\displaystyle du=\frac{1}{z}dz\)
\(\displaystyle dv=z^2dz\)
\(\displaystyle v=\frac{z^3}{3}\)
\(\displaystyle \lim_{{t}\to{0}}\left[\frac{z^3}{3}\ln\left({z}\right)\right]-\frac{1}{3}\int_{t}^{2}z^2\,ds\)
\(\displaystyle \lim_{{t}\to{0}}\frac{1}{3}\left[z^3\ln\left({z}\right)\right]-\frac{1}{9}\left[z^3\right]\) for \(\displaystyle t \le z\le2\)
I know that \(\displaystyle \left[z^3\ln\left({z}\right)\right]\) will give me some trouble so I use L'hopital's rule.
\(\displaystyle \left[\frac{\ln\left({z}\right)}{z^\left(-3\right)}\right]\implies
\left[\frac{\frac{1}{z}}{-3z^\left(-4\right)}\right]\implies
-\frac{1}{3}\left[z^3\right]\)
Then I plug that all back into my equation...
\(\displaystyle \lim_{{t}\to{0}}-\frac{1}{9}\left[z^3\right]-\frac{1}{9}\left[z^3\right]\) for \(\displaystyle t \le z\le2\)
After evaluating I get...
\(\displaystyle -\frac{1}{9}\left[8-0\right]-\frac{1}{9}\left[8-0\right]\implies-\frac{16}{9}\)
What am I doing wrong? The solution manual states that I should be getting \(\displaystyle \frac{8}{3}\ln\left({2}\right)-\frac{8}{9}\) as my answer.
\(\displaystyle \int_{0}^{2}z^2lnz\,dz\)
This is what I did...
\(\displaystyle \lim_{{t}\to{0}}\int_{t}^{2}z^2lnz \,dz\)
Then using integration by parts...
\(\displaystyle u=\ln\left({z}\right)\)
\(\displaystyle du=\frac{1}{z}dz\)
\(\displaystyle dv=z^2dz\)
\(\displaystyle v=\frac{z^3}{3}\)
\(\displaystyle \lim_{{t}\to{0}}\left[\frac{z^3}{3}\ln\left({z}\right)\right]-\frac{1}{3}\int_{t}^{2}z^2\,ds\)
\(\displaystyle \lim_{{t}\to{0}}\frac{1}{3}\left[z^3\ln\left({z}\right)\right]-\frac{1}{9}\left[z^3\right]\) for \(\displaystyle t \le z\le2\)
I know that \(\displaystyle \left[z^3\ln\left({z}\right)\right]\) will give me some trouble so I use L'hopital's rule.
\(\displaystyle \left[\frac{\ln\left({z}\right)}{z^\left(-3\right)}\right]\implies
\left[\frac{\frac{1}{z}}{-3z^\left(-4\right)}\right]\implies
-\frac{1}{3}\left[z^3\right]\)
Then I plug that all back into my equation...
\(\displaystyle \lim_{{t}\to{0}}-\frac{1}{9}\left[z^3\right]-\frac{1}{9}\left[z^3\right]\) for \(\displaystyle t \le z\le2\)
After evaluating I get...
\(\displaystyle -\frac{1}{9}\left[8-0\right]-\frac{1}{9}\left[8-0\right]\implies-\frac{16}{9}\)
What am I doing wrong? The solution manual states that I should be getting \(\displaystyle \frac{8}{3}\ln\left({2}\right)-\frac{8}{9}\) as my answer.
Last edited: