- #1
dingo_d
- 211
- 0
Homework Statement
I'm going through Jackson a bit, reading on Magnetostatics, and I came into a bump.
I'm looking at
[tex]\nabla\times B=\frac{1}{c}\nabla\times\nabla\times\int\frac{j(r')}{|r-r'|}d^3r'[/tex]
I expand that using 'BAC-CAB' rule and I get:
[tex]\nabla\times B=\frac{1}{c}\nabla\int j(r')\cdot\nabla\left(\frac{1}{|r-r'|}\right)d^3r'-\frac{1}{c}\int j(r')\nabla^2\left(\frac{1}{|r-r'|}\right)d^3r'[/tex]
So after changing the [tex]\nabla[/tex] into [tex]\nabla '[/tex] and using the fact that [tex]\nabla^2\left(\frac{1}{|r-r'|}\right)=-4\pi\delta(r-r')[/tex]
I end up with:
[tex]\nabla\times B=-\frac{1}{c}\nabla\int j(r')\cdot\nabla '\left(\frac{1}{|r-r'|}\right)d^3r'+\frac{4\pi}{c}j(r)[/tex]
And here it says that the first part after integration by parts becomes:
[tex]\nabla\times B=\frac{1}{c}\nabla\int \frac{\nabla '\cdot j(r')}{|r-r'|}\right)d^3r'+\frac{4\pi}{c}j(r)[/tex]
I tried integration by parts like this:
[tex]j(r')d^3r'=dv\Rightarrow j(r')=v[/tex] and [tex]\nabla '\left(\frac{1}{|r-r'|}\right)=u\Rightarrow \nabla^2'\left(\frac{1}{|r-r'|}\right)d^3r'=du[/tex]
But I don't get what I need :\
What am I doing wrong?