- #1
kathrynag
- 598
- 0
(a) Find all irreducible polynomials of degree less than or equal to 3 in Z2[x].
(b) Show that f(x) = x4 + x + 1 is irreducible over Z2.
(c) Factor g(x) = x5 + x + 1 into a product of irreducible polynomials in Z2[x].
We have an irreducible polynomial if it cannot be factored into a product of polynomials of lower degree.
a)deg 1: x, x+1
deg 2: x^2+x+1
deg 3: x^3+x^2 + 1, x^3 + x +1
b) and c) get me confused.
I know a polynomial in F[x] is irreduble over F iff for all f(x),g(x) in F[x], p(x)|f(x)g(x) implies p(x)|f(x) or p(x)|g(x).
I don't know if that helps or if there is a simpler way to do this with degrees or something
(b) Show that f(x) = x4 + x + 1 is irreducible over Z2.
(c) Factor g(x) = x5 + x + 1 into a product of irreducible polynomials in Z2[x].
We have an irreducible polynomial if it cannot be factored into a product of polynomials of lower degree.
a)deg 1: x, x+1
deg 2: x^2+x+1
deg 3: x^3+x^2 + 1, x^3 + x +1
b) and c) get me confused.
I know a polynomial in F[x] is irreduble over F iff for all f(x),g(x) in F[x], p(x)|f(x)g(x) implies p(x)|f(x) or p(x)|g(x).
I don't know if that helps or if there is a simpler way to do this with degrees or something