- #1
unscientific
- 1,734
- 13
Homework Statement
(a) Find fermi temperature and debye temperature. Calculate them for copper.(b) Show the scattering wave relation
(c) What does ##\lambda## mean?
Homework Equations
The Attempt at a Solution
Part(a)
The fermi temperature and debye temperature is given by:
[tex]T_F = \frac{\hbar^2 (3n \pi^2)^{\frac{2}{3}}}{2m_e k_B}[/tex]
[tex] \theta_D = \hbar (6 \pi^2 n)^{\frac{1}{3}} \frac{c}{k_B} [/tex]
For copper: ##a = 3.5 \times 10^{-10} m##, ##\theta_D = 231 K##, ##\T_F = 5.5 \times 10^4 K##.
Part(b)
[tex]k^{'} = (1-\delta)k_F[/tex]
[tex]E^{'} = (1-\delta)^2E_F[/tex]
I suppose the phonon gains energy by scattering, so ##E_{ph} = \Delta E = E^{'} - E_F##.
[tex]E_{ph}= E^{'} - E_F = E_F \left( 1 - (1-\delta)^2 \right)[/tex]
[tex]k_{ph} = \left(1 - (1-\delta)^2 \right)^{\frac{1}{2}} k_F [/tex]
[tex]k_{ph} \approx \left( 1 - \frac{1}{2} (1-\delta)^2 \right) k_F[/tex]
[tex]\frac{k_{ph}}{k_F} \approx \frac{1}{2}(1 + 2\delta) [/tex]
Substituting in, LHS
[tex] = \frac{1}{2} \frac{1 + 2\delta}{2\delta} \frac{1}{k_F} [/tex]
[tex] = \frac{1}{2}(1 + \frac{1}{2\delta}) \frac{1}{k_F} [/tex]
[tex] \approx \frac{1}{4\delta k_F}[/tex]
How is this ##\approx \lambda##?
Part(c)
Not sure what this "wavelength" means.