- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the inverse function $f^{-1}$ of $f$.
Find the range of $f$ and the domain and range of $f^{-1}$
$$f(x)=5 \sin x +2; \quad -\frac{\pi}{2}\le x \le \frac{\pi}{2}$$
exchange x for y and solve for y
\begin{align*}\displaystyle
x&=5\sin y + 2 \\
\frac{x-2}{5}&=\sin y
\end{align*}
multiply $\sin^{-1}$ to both sides
$$\sin^{-1}\left( \frac{x-2}{5}\right)
=\sin^{-1}(\sin y)=f^{-1}(x)$$
ok how do get the range of $f$ and domain and range of $f^{-1}$
Find the range of $f$ and the domain and range of $f^{-1}$
$$f(x)=5 \sin x +2; \quad -\frac{\pi}{2}\le x \le \frac{\pi}{2}$$
exchange x for y and solve for y
\begin{align*}\displaystyle
x&=5\sin y + 2 \\
\frac{x-2}{5}&=\sin y
\end{align*}
multiply $\sin^{-1}$ to both sides
$$\sin^{-1}\left( \frac{x-2}{5}\right)
=\sin^{-1}(\sin y)=f^{-1}(x)$$
ok how do get the range of $f$ and domain and range of $f^{-1}$