- #1
Guest2
- 193
- 0
I'm asked to find first two terms of the series $\sin(\sin(2x))$.
$\sin(t) = t-\frac{t^3}{3!}+\frac{t^5}{5!}-\cdots$
$\sin(2x) = 2x-\frac{2^3x^3}{3!}+\frac{2^5x^5}{5!}-\cdots$
$\displaystyle \sin(\sin(2x)) = (2x-\frac{2^3x^3}{3!}+\frac{2^5x^5}{5!}-\cdots)-\frac{(2x-\frac{2^3x^3}{3!}+\frac{2^5x^5}{5!}-\cdots)^3
}{3!}+\cdots$
The cubed term and those beyond don't contribute anything to the first two terms, so
So $\sin(\sin(2x)) = 2x-\frac{2^3x^3}{3!}+\cdots$
However, this is wrong. What have I missed?
$\sin(t) = t-\frac{t^3}{3!}+\frac{t^5}{5!}-\cdots$
$\sin(2x) = 2x-\frac{2^3x^3}{3!}+\frac{2^5x^5}{5!}-\cdots$
$\displaystyle \sin(\sin(2x)) = (2x-\frac{2^3x^3}{3!}+\frac{2^5x^5}{5!}-\cdots)-\frac{(2x-\frac{2^3x^3}{3!}+\frac{2^5x^5}{5!}-\cdots)^3
}{3!}+\cdots$
The cubed term and those beyond don't contribute anything to the first two terms, so
So $\sin(\sin(2x)) = 2x-\frac{2^3x^3}{3!}+\cdots$
However, this is wrong. What have I missed?