What are the indefinite integrals of cos x and sin x over cos x plus sin x?

  • MHB
  • Thread starter MarkFL
  • Start date
In summary, an indefinite integral is the antiderivative of a given function and is represented as ∫f(x) dx. The indefinite integral of cos x is sin x + C, while the indefinite integral of sin x is -cos x + C. To integrate a fraction with trigonometric functions, the substitution method can be used. When integrating cos x and sin x over cos x plus sin x, the trigonometric identity cos^2x + sin^2x = 1 can be used to simplify the integral.
  • #1
MarkFL
Gold Member
MHB
13,288
12
Hello MHB Community,

anemone couldn't be with us this week, but she conscientiously made provisions for me to post this week's POTW for Secondary School/High School Students in her stead.

So, with no further ado...

The indefinite integrals $I_1$ and $I_2$ are defined by:

$\displaystyle I_1=\int \dfrac{\cos x}{\cos x+\sin x} dx$

and

$\displaystyle I_2=\int \dfrac{\sin x}{\cos x+\sin x} dx$

Determine $I_1$, $I_2$ and hence:

$\displaystyle \int \dfrac{\sin x}{a\cos x+b\sin x} dx$

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
  • #2
Hi MHB,

Thanks to MarkFL for his help in posting last week's POTW.! :)

Congratulations to the following members for their correct solutions::)

1. laura123
2. kaliprasad

Solution from laura123:
$\begin{aligned}\displaystyle I_1&=\int \dfrac{\cos x}{\cos x+\sin x} dx=\int \dfrac{2\cos x}{2(\cos x+\sin x)} dx=\\
&=\int \dfrac{2\cos x+\sin x-\sin x}{2(\cos x+\sin x)}=\dfrac{1}{2}\int \dfrac{\cos x+\cos x+\sin x-\sin x}{\cos x+\sin x} dx=\\
&=\dfrac{1}{2}\int\dfrac{\cos x+\sin x}{\cos x+\sin x}dx+\dfrac{1}{2}\int\dfrac{\cos x-\sin x}{\cos x+\sin x}dx=\\
&=\dfrac{1}{2}x+\dfrac{1}{2}\log|\cos x+\sin x|+k.
\end{aligned}$

$\begin{aligned}\displaystyle I_2&=\int \dfrac{\sin x}{\cos x+\sin x} dx=\int \dfrac{\sin x+\cos x-\cos x}{\cos x+\sin x} dx=\\
&=\int \left(1-\dfrac{\cos x}{\cos x+\sin x}\right)dx=x-I_1=\\
&=\dfrac{1}{2}x-\dfrac{1}{2}\log|\cos x+\sin x|+k.
\end{aligned}$

$\begin{aligned}\displaystyle \int \dfrac{\sin x}{a\cos x+b\sin x} dx&=\dfrac{1}{a^2+b^2}\int \dfrac{(a^2+b^2)\sin x}{a\cos x+b\sin x} dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a^2\sin x+b^2\sin x+ab\cos x-ab\cos x}{a\cos x+b\sin x} dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a^2\sin x-ab\cos x}{a\cos x+b\sin x} dx+\dfrac{1}{a^2+b^2}\int\dfrac{b^2\sin x+ab\cos x}{a\cos x+b\sin x}dx=\\
&=\dfrac{1}{a^2+b^2}\int \dfrac{a(a\sin x-b\cos x)}{a\cos x+b\sin x} dx+\dfrac{1}{a^2+b^2}\int\dfrac{b(b\sin x+a\cos x)}{a\cos x+b\sin x}dx=\\
&=-\dfrac{a}{a^2+b^2}\log|a\cos x+b\sin x|+\dfrac{b}{a^2+b^2}x+k.
\end{aligned}$

Solution from kaliprasad:

$∫ \dfrac{\sin\ x}{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} \cdot \dfrac{2\sin\ x}{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} \cdot \dfrac{(\sin\ x+\cos \ x) +(\sin\ x-\cos \ x) }{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2} (1+ \dfrac{\sin\ x-\cos \ x }{\sin \ x + \ cos\ x} dx $

= $∫\dfrac{1}{2}dx + ∫\dfrac{1}{2} \dfrac{\sin\ x-\cos \ x }{\sin \ x + \ cos\ x} dx $

= $\dfrac{1}{2}x - \dfrac{1}{2} ln \mid (\sin \ x + \ cos\ x)\mid +c_1$

as $\dfrac{\cos\ x}{\sin \ x + \ cos\ x} $

= $1- \dfrac{\sin\ x}{\sin \ x + \ cos\ x} $

so $∫ \dfrac{\cos \ x}{\sin \ x + \ cos\ x} dx $

= $\dfrac{1}{2}x + \dfrac{1}{2} ln \mid (\sin \ x + \ cos\ x)\mid +c_2$

now we need to inetgrate

$\dfrac{\sin\ x}{a \cos \ x + b\ sin\ x} $

as derivate of $a \cos \ x + b\sin \ x $ is $- a \sin \ x + b\cos \ x $

we can put $\sin\ x= m(a \cos \ x + b\ sin\ x) + n (- a \sin \ x + b\cos \ x) $



comparing coefficients we get 1 = ma + nb and 0=mb-na



solving these 2 we get



$m=\dfrac{b}{b^2+a^2}$ and $n= \dfrac{- a}{b^2+a^2}$



so $\sin\ x=\dfrac{b}{b^2+a^2}(a \cos \ x + b\ sin\ x) - \dfrac{a}{b^2+a^2} (- a \sin \ x + b\cos \ x) $



so $\dfrac{\sin\ x}{a \ cos \ x + b\sin \ x }= \dfrac{b}{b^2+a^2} - \dfrac{a}{b^2+a^2} \dfrac{- a \sin \ x + b\cos \ x} {a \cos \ x + b\sin \ x } $



so integral of above = $ \dfrac{b}{b^2+a^2} x - \dfrac{a}{b^2+a^2} ln \mid a \cos \ x + b\sin \ x \mid +C$

where $C$ is the constant of integration.
 

FAQ: What are the indefinite integrals of cos x and sin x over cos x plus sin x?

1. What is an indefinite integral?

An indefinite integral is a mathematical concept that represents the antiderivative of a given function. It is written as ∫f(x) dx, where f(x) is the function and dx represents the variable of integration.

2. What is the indefinite integral of cos x?

The indefinite integral of cos x is sin x + C, where C is the constant of integration. This can be written as ∫cos x dx = sin x + C.

3. What is the indefinite integral of sin x?

The indefinite integral of sin x is -cos x + C, where C is the constant of integration. This can be written as ∫sin x dx = -cos x + C.

4. How do you integrate a fraction with trigonometric functions?

To integrate a fraction with trigonometric functions, you can use the substitution method. This involves substituting u for the denominator and then rewriting the integral in terms of u. From there, you can use the basic trigonometric identities to simplify the integral and find the antiderivative.

5. How do you integrate cos x and sin x over cos x plus sin x?

To integrate cos x and sin x over cos x plus sin x, you can use the trigonometric identity cos^2x + sin^2x = 1 to simplify the integral. This will result in the integral of 1 over cos x plus sin x, which can be solved using the substitution method mentioned in the previous question.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Back
Top