- #1
merlan
- 4
- 0
Let [tex]B_n = (0, \frac {1}{n} ][/tex] for all [tex]n \in N [/tex] (N = set of natural numbers)
a) For each [tex]n \in N[/tex], find [tex] \bigcap _{k=1}^n B_k[/tex] and [tex] \bigcup _{k=1}^n B_k[/tex]
b) Find [tex] \bigcap _{n=1}^ \infty B_n[/tex] and [tex] \bigcup _{n=1}^ \infty B_n[/tex]
For a) I have
[tex]
B_1 = (0,1] \\
B_2 = (0, \frac {1}{2} ] \\
B_3 = (0, \frac {1}{3} ] [/tex]
so [tex] \bigcap _{k=1}^n B_k[/tex] appears to be [tex]{ \emptyset } [/tex] and [tex] \bigcup _{k=1}^n B_k[/tex] looks like [tex](0,1][/tex]
I'm new to this and any help would be greatly appreciated. The questions I have are is a) correct? and what is the difference between a) and b)?
a) For each [tex]n \in N[/tex], find [tex] \bigcap _{k=1}^n B_k[/tex] and [tex] \bigcup _{k=1}^n B_k[/tex]
b) Find [tex] \bigcap _{n=1}^ \infty B_n[/tex] and [tex] \bigcup _{n=1}^ \infty B_n[/tex]
For a) I have
[tex]
B_1 = (0,1] \\
B_2 = (0, \frac {1}{2} ] \\
B_3 = (0, \frac {1}{3} ] [/tex]
so [tex] \bigcap _{k=1}^n B_k[/tex] appears to be [tex]{ \emptyset } [/tex] and [tex] \bigcup _{k=1}^n B_k[/tex] looks like [tex](0,1][/tex]
I'm new to this and any help would be greatly appreciated. The questions I have are is a) correct? and what is the difference between a) and b)?