- #1
karush
Gold Member
MHB
- 3,269
- 5
let $T:\Bbb{R}^2\rightarrow\Bbb{R}^2$ and $S:\Bbb{R}^2\rightarrow\Bbb{R}^2$ be defined by
$S\left[\begin{array}{c}x \\ y \end{array}\right]=\left[\begin{array}{c}3x+y \\ x+2y \end{array}\right],\qquad
T\left[\begin{array}{c}x \\ y \end{array}\right]=\left[\begin{array}{c}2y \\ 3x \end{array}\right]$
Find $S+T, \quad 3S+4T, \quad ST, \quad TS $
so
$S+T=\left[\begin{array}{c}3+1 \\ 1+2 \end{array}\right]
+\left[\begin{array}{c}3+0\\0+2 \end{array}\right]$
on $T$ $R_1 \leftrightarrow R_2$ before procede if ok...
$S\left[\begin{array}{c}x \\ y \end{array}\right]=\left[\begin{array}{c}3x+y \\ x+2y \end{array}\right],\qquad
T\left[\begin{array}{c}x \\ y \end{array}\right]=\left[\begin{array}{c}2y \\ 3x \end{array}\right]$
Find $S+T, \quad 3S+4T, \quad ST, \quad TS $
so
$S+T=\left[\begin{array}{c}3+1 \\ 1+2 \end{array}\right]
+\left[\begin{array}{c}3+0\\0+2 \end{array}\right]$
on $T$ $R_1 \leftrightarrow R_2$ before procede if ok...