- #1
physicsforumsfan
- 28
- 0
Hi all,
I got a 3 part Qs: γ=1/√1-v^2-c^2
Part A
Consider the Lorentz transformation tensor
Matrix
Row 1: [ γ 0 0 -vγ/c]
Row 2: [ 0 1 0 0 ]
Row 3: [ 0 0 1 0 ]
Row 4:-[vγ/c 0 0 γ ]
for transforming 4-vectors from frame S to [itex]\overline{S}[/itex] according to[itex]\overline{A}[/itex][itex]^{\mu}[/itex] = L[itex]^{\mu}[/itex] [itex]_{v}[/itex] A[itex]^{v}[/itex] . The coordinate system is x[itex]^{0}[/itex] =ct, x[itex]^{1}[/itex] = x, x[itex]^{2}[/itex] = y, x[itex]^{3}[/itex] = z .
Doing the transformation and then solving for it gives the answer:
d/d[itex]\overline{t}[/itex]=γ(d/dt-vd/dx), d/d[itex]\overline{x}[/itex]=γ(v/c^2 d/dt - d/dx), d/d[itex]\overline{y}[/itex] = d/dy, d/d[itex]\overline{z}[/itex]=d/dz
That's the answer I get but I am not sure about if I have the addition and substraction signs correct.
Part B
In above question, if the 4-vector potential is given by [itex]\underline{A}[/itex]=([itex]\phi[/itex]/c, Ax, Ay, Az) in frame S what are its components in frame [itex]\overline{S}[/itex]?
Again solving for and getting the answer, I am confused on the addition and subtraction signs:
[itex]\overline{A}[/itex]=(γ[itex]\varphi[/itex]/c + γv/c Ax, γAx+ γv[itex]\varphi[/itex]/c^2, Ay, Az)
Part C
In Part B, the electric and magnetic fields are defined in frames S and [itex]\overline{S}[/itex] by
E[itex]^{(3)}[/itex]=-∇[itex]\varphi[/itex]-dA[itex]^{(3)}[/itex]/dt, [itex]\overline{E}[/itex][itex]^{(3)}[/itex]=-∇[itex]\overline{\varphi}[/itex]-d[itex]\overline{A}^{(3)}[/itex]/d[itex]\overline{t}[/itex], B[itex]^{(3)}[/itex]=∇xA[itex]^{3}[/itex], [itex]\overline{B}[/itex][itex]^{(3)}[/itex]=[itex]\overline{∇}[/itex]x[itex]\overline{A}^{(3)}[/itex],
[itex]\overline{A}[/itex]=([itex]\overline{\varphi}[/itex]/c, [itex]\overline{A}[/itex]x,
If
[itex]\overline{A}[/itex]y, [itex]\overline{A}[/itex]z)=([itex]\overline{\varphi}[/itex]/c, [itex]\overline{A}^{(3)}[/itex])
what is value of [itex]\overline{E}[/itex]x?
Again solving for it I get my answer in which I am unsure of the addition and subtraction signs.
[itex]\overline{E}[/itex]x=Ex, [itex]\overline{E}[/itex]y=γ(Ey+vBz), [itex]\overline{E}[/itex]z=γ(Ez-vBy)
I am also not sure if the have the vector components assigned to the correct axis.
Help would be appreciated.
I got a 3 part Qs: γ=1/√1-v^2-c^2
Part A
Homework Statement
Consider the Lorentz transformation tensor
Matrix
Row 1: [ γ 0 0 -vγ/c]
Row 2: [ 0 1 0 0 ]
Row 3: [ 0 0 1 0 ]
Row 4:-[vγ/c 0 0 γ ]
for transforming 4-vectors from frame S to [itex]\overline{S}[/itex] according to[itex]\overline{A}[/itex][itex]^{\mu}[/itex] = L[itex]^{\mu}[/itex] [itex]_{v}[/itex] A[itex]^{v}[/itex] . The coordinate system is x[itex]^{0}[/itex] =ct, x[itex]^{1}[/itex] = x, x[itex]^{2}[/itex] = y, x[itex]^{3}[/itex] = z .
The Attempt at a Solution
Doing the transformation and then solving for it gives the answer:
d/d[itex]\overline{t}[/itex]=γ(d/dt-vd/dx), d/d[itex]\overline{x}[/itex]=γ(v/c^2 d/dt - d/dx), d/d[itex]\overline{y}[/itex] = d/dy, d/d[itex]\overline{z}[/itex]=d/dz
That's the answer I get but I am not sure about if I have the addition and substraction signs correct.
Part B
Homework Statement
In above question, if the 4-vector potential is given by [itex]\underline{A}[/itex]=([itex]\phi[/itex]/c, Ax, Ay, Az) in frame S what are its components in frame [itex]\overline{S}[/itex]?
The Attempt at a Solution
Again solving for and getting the answer, I am confused on the addition and subtraction signs:
[itex]\overline{A}[/itex]=(γ[itex]\varphi[/itex]/c + γv/c Ax, γAx+ γv[itex]\varphi[/itex]/c^2, Ay, Az)
Part C
Homework Statement
In Part B, the electric and magnetic fields are defined in frames S and [itex]\overline{S}[/itex] by
E[itex]^{(3)}[/itex]=-∇[itex]\varphi[/itex]-dA[itex]^{(3)}[/itex]/dt, [itex]\overline{E}[/itex][itex]^{(3)}[/itex]=-∇[itex]\overline{\varphi}[/itex]-d[itex]\overline{A}^{(3)}[/itex]/d[itex]\overline{t}[/itex], B[itex]^{(3)}[/itex]=∇xA[itex]^{3}[/itex], [itex]\overline{B}[/itex][itex]^{(3)}[/itex]=[itex]\overline{∇}[/itex]x[itex]\overline{A}^{(3)}[/itex],
[itex]\overline{A}[/itex]=([itex]\overline{\varphi}[/itex]/c, [itex]\overline{A}[/itex]x,
If
[itex]\overline{A}[/itex]y, [itex]\overline{A}[/itex]z)=([itex]\overline{\varphi}[/itex]/c, [itex]\overline{A}^{(3)}[/itex])
what is value of [itex]\overline{E}[/itex]x?
The Attempt at a Solution
Again solving for it I get my answer in which I am unsure of the addition and subtraction signs.
[itex]\overline{E}[/itex]x=Ex, [itex]\overline{E}[/itex]y=γ(Ey+vBz), [itex]\overline{E}[/itex]z=γ(Ez-vBy)
I am also not sure if the have the vector components assigned to the correct axis.
Help would be appreciated.