MHB What are the Positive Integer Solutions to the Factorial Equation?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Factorial
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine all positive integers $a,\,b$ and $c$ that satisfy equation $(a+b)!=4(b+c)!+18(a+c)!$.
 
Mathematics news on Phys.org
If $(a+b)! = 4(b+c)! + 18(a+c)!$ then $(a+b)! > (a+c)!$, from which it follows that $b>c$. Similarly, $(a+b)! > (b+c)!$, so that $a>c$. Suppose for the moment that $b\geqslant a$, and let $x = \dfrac{(a+b)!}{(b+c)!}$, $y = \dfrac{(b+c)!}{(a+c)!}$. Then $x$ and $y$ are positive integers. After dividing through by $(a+c)!$, the factorial equation becomes $ \dfrac{(a+b)!}{(a+c)!} = \dfrac{4(b+c)!}{(a+c)!} + 18$, or $xy = 4y + 18$. Therefore $y(x-4) = 18$, and $y$ must be a factor of $18$. But not every factor of $18$ will lead to a solution of the equation, because $x$ and $y$ are defined in terms of factorials and so have to be products of consecutive integers. I found that the only values of $(x,y)$ that work are $(7,6)$ and $(22,1)$, corresponding to the solutions $(a,b,c) = (3,4,2)$ and $(11,11,10)$.

There seems to be no obvious reason why $b\geqslant a$, so we should also look at the possibility $a>b$. Then a similar calculation to the one above leads to an equation like $xy = 4y + 18$, but with the $4$ and $18$ interchanged. However, that did not lead to any new solutions of the factorial equation. So there are only two solutions, namely

$7! = 4\cdot6! + 18\cdot5!$ (when $(a,b,c) = (3,4,2)$)

and

$22! = 4\cdot21! + 18\cdot21!$ (when $(a,b,c) = (11,11,10)$).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
2
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
11
Views
2K
Replies
1
Views
1K
Back
Top