- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $a\in \mathbb{R}$. We define the map $\text{cost}_a:\mathbb{R}\rightarrow \mathbb{R}$, $x\mapsto a$. We define also $-f:=(-1)f$ for a map $f:\mathbb{R}\rightarrow \mathbb{R}$.
Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a map and $\lambda\in \mathbb{R}$.
Show that:
Could you give me a hint how we could these? Aren't all of these trivial? (Wondering)
Let $a\in \mathbb{R}$. We define the map $\text{cost}_a:\mathbb{R}\rightarrow \mathbb{R}$, $x\mapsto a$. We define also $-f:=(-1)f$ for a map $f:\mathbb{R}\rightarrow \mathbb{R}$.
Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a map and $\lambda\in \mathbb{R}$.
Show that:
- for $a,b\in \mathbb{R}$ it holds that $\text{cost}_a+\text{cost}_b=\text{cost}_{a+b}$.
- for $a\in \mathbb{R}$ it holds that $\lambda\text{cost}_a=\text{cost}_{\lambda a}$.
- $-(f+g)=(-f)+(-g)$.
- $f+f=2f$.
- $f+(-f)=\text{cost}_0$.
Could you give me a hint how we could these? Aren't all of these trivial? (Wondering)