- #1
- 4,807
- 32
Here I must evaluate
[tex]\frac{1}{2\pi i}\int_C \frac{f(\zeta)}{w(\zeta)}\frac{w(\zeta)-w(z)}{\zeta -z}d\zeta[/tex]
where f is holomorphic on the hole complex plane, where w(z) is a polynomial of degree n with all of its zeroes distinct (i.e. all n have multiplicity 1), and where C is a closed curve containing all the zeroes of w in its interior.
The solution manual says that the integral equals
[tex]\sum_{j=1}^n Res(\frac{f(\zeta)}{w(\zeta)}\frac{w(\zeta)-w(z)}{\zeta -z}, \zeta_j)[/tex]
where [itex]\zeta_j[/itex] are the n zeroes of w. But isn't [itex]\zeta = z[/itex] also a pole for the integrand?
[tex]\frac{1}{2\pi i}\int_C \frac{f(\zeta)}{w(\zeta)}\frac{w(\zeta)-w(z)}{\zeta -z}d\zeta[/tex]
where f is holomorphic on the hole complex plane, where w(z) is a polynomial of degree n with all of its zeroes distinct (i.e. all n have multiplicity 1), and where C is a closed curve containing all the zeroes of w in its interior.
The solution manual says that the integral equals
[tex]\sum_{j=1}^n Res(\frac{f(\zeta)}{w(\zeta)}\frac{w(\zeta)-w(z)}{\zeta -z}, \zeta_j)[/tex]
where [itex]\zeta_j[/itex] are the n zeroes of w. But isn't [itex]\zeta = z[/itex] also a pole for the integrand?