- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
When is the expectancy of $max \{n-q,q-1\}$ , where $n$ is a fixed number and $q$ is in $[0,n]$ , so $\max\{n-q,q-1 \}$ is in $[\frac{n}{2},n]$, equal to $\frac{\frac{n}{2}+n}{2}=\frac{3n}{4}$? (Thinking)
When is the expectancy of $max \{n-q,q-1\}$ , where $n$ is a fixed number and $q$ is in $[0,n]$ , so $\max\{n-q,q-1 \}$ is in $[\frac{n}{2},n]$, equal to $\frac{\frac{n}{2}+n}{2}=\frac{3n}{4}$? (Thinking)