- #1
nhrock3
- 415
- 0
3)
[tex]q:R^{3}->R[/tex] is defined by [tex]q(x,y,z)=4(xy+yz+zx)[/tex]
find the minimal [tex]M\in R[/tex] so [tex]q(x,y,z)\leq M(x^{2}+y^{2}+z^{2})[/tex]
?
why in the solution the calculate the caracteristic polinomial
?
why if (t+2) is in power 2 then we have -2 in two members of
the formula q(v) ??
our polinomial doesn't separated into different lenear member
so in order to find its jordan form we need to find the minimal polinomial
etc..
but in the solution they said it straight forward why??
why did they coose in the end to put eigen vaule iside?
why its minimal?
we could put a vector which not is 0.5
?
is it true that the as the eigen vectors would diagonolise A
so is their orthonormal basis whould show Q as in sum of squares
correct?
[tex]q:R^{3}->R[/tex] is defined by [tex]q(x,y,z)=4(xy+yz+zx)[/tex]
find the minimal [tex]M\in R[/tex] so [tex]q(x,y,z)\leq M(x^{2}+y^{2}+z^{2})[/tex]
?
why in the solution the calculate the caracteristic polinomial
?
why if (t+2) is in power 2 then we have -2 in two members of
the formula q(v) ??
our polinomial doesn't separated into different lenear member
so in order to find its jordan form we need to find the minimal polinomial
etc..
but in the solution they said it straight forward why??
why did they coose in the end to put eigen vaule iside?
why its minimal?
we could put a vector which not is 0.5
?
is it true that the as the eigen vectors would diagonolise A
so is their orthonormal basis whould show Q as in sum of squares
correct?
Last edited by a moderator: