What Determines the Number of Particles per Unit Volume in Ionized Hydrogen?

AI Thread Summary
The discussion clarifies the calculation of particle density in ionized hydrogen, emphasizing that the number of particles per unit volume is determined by the equation n = 2ρ/m_H. This is because one hydrogen molecule, when ionized, produces four particles: two protons and two electrons. The initial confusion arises from the assumption that n should be calculated as n = ρ/(2m_H), which would underestimate the number of particles. The correct approach accounts for the additional particles produced during ionization, leading to the conclusion that the density of particles is indeed twice that suggested by mass considerations alone. Understanding this relationship is crucial for accurate calculations in ionized hydrogen scenarios.
LCSphysicist
Messages
644
Reaction score
162
Homework Statement
Find the temperature of totally ionized hydrogen plasma
of density p = 0.10 g/cm^ at which the thermal radiation pressure
is equal to the gas kinetic pressure of the particles of plasma. Take
into account that the thermal radiation pressure p = u/3, where u
is the space density of radiation energy, and at high temperatures all
substances obey the equation of state of an ideal gas.
Relevant Equations
.
Captura de tela de 2022-04-09 10-51-42.png

The image above is the solution posted by the book. I can follow the reasoning that has been used, but i have a trouble particularly at the first equation itself.

Why should $$n = 2 \rho / m_{H} $$ instead of $$n = \rho / (2m_{H})$$, since the mass os a molecule of hydrogen is two times the hydrogen/proton mass?
 
Physics news on Phys.org
If you had only protons there, the mass would be the same, and the density would be the same. From ##n=\rho / m_H## you'd get a number of protons. Now, since you know there is an extra particle for each proton that doesn't really do anything mass-wise, you get twice the number of particles that the same density/mass consideration would suggest. Unsurprisingly, ##n_{proton+electron}=2n_{proton}##.

The equation you think should be there instead suggests that you should only count half as many particles as what you get from density/mass considerations.

You could imagine some fantasy physics where each proton is accompanied by not only an electron, but also an additional imaginary particle that doesn't do anything mass-wise. The number of particles ##n## in that case should then be 3 times what you get from density/mass. Which would be ##n=3\rho / m_H##
 
Herculi said:
Why should $$n = 2 \rho / m_{H} $$ instead of $$n = \rho / (2m_{H})$$, since the mass os a molecule of hydrogen is two times the hydrogen/proton mass?
The number of hydrogen molecules (each of mass ##2m_H##) per unit volume is ##\frac {\rho}{2m_H}##.

One hydrogen molecule, when fully ionised, produces 4 particles (2 protons and 2 electrons).

So, after ionisation, the number of particles per unit volume is ##4 \times \frac {\rho}{2m_H} = \frac {2\rho}{m_H}##.

(Note, it’s probably better to think in terms of atoms rather than molecules for these sorts of problems.)
 
  • Like
Likes LCSphysicist
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top