- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the proof of the following sentence:
Sentence:
Let $f,g$ functions. Then:
$$f=g \leftrightarrow dom(f)=dom(g) \wedge (\forall x \in dom(f)) (f(x)=g(x))$$
Proof:
$$\Rightarrow$$
If $f=g$, then $f \subset g$ and $g \subset f \Rightarrow dom(f) \subset dom(g) \text{ and } dom(g) \subset dom(f)$
So, $dom(f)=dom(g)$.
Also, from the sentence: If $f,g$ functions and $f \subset g$, we have that $\forall x \in dom(f): f(x)=g(x)$
we have that: $\forall x \in dom(f) f(x)=g(x)$
$$\Leftarrow$$
We want to show $f=g$, knowing that $dom(f)=dom(g)$ and $\forall x \in dom(f) f(x)=g(x)$
It suffices to show that $f \subset g$ and $g \subset f$.
Let $t \in f$. Then, $t=<x,f(x)>$, for a $x \in dom(f)$.
But, $dom(f)=dom(g)$ and so:
$$x \in dom(g) \leftrightarrow <x,g(x)> \in g$$
From the hypothesis, $f(x)=g(x)$ and so $t=<x,f(x)> \in g$.
Therefore, $f \subset g$.
In the same way, we show that $g \subset f$.
Therefore, $f=g$.
Could you explain me the $\Leftarrow$ part of the proof? (Thinking)
I am looking at the proof of the following sentence:
Sentence:
Let $f,g$ functions. Then:
$$f=g \leftrightarrow dom(f)=dom(g) \wedge (\forall x \in dom(f)) (f(x)=g(x))$$
Proof:
$$\Rightarrow$$
If $f=g$, then $f \subset g$ and $g \subset f \Rightarrow dom(f) \subset dom(g) \text{ and } dom(g) \subset dom(f)$
So, $dom(f)=dom(g)$.
Also, from the sentence: If $f,g$ functions and $f \subset g$, we have that $\forall x \in dom(f): f(x)=g(x)$
we have that: $\forall x \in dom(f) f(x)=g(x)$
$$\Leftarrow$$
We want to show $f=g$, knowing that $dom(f)=dom(g)$ and $\forall x \in dom(f) f(x)=g(x)$
It suffices to show that $f \subset g$ and $g \subset f$.
Let $t \in f$. Then, $t=<x,f(x)>$, for a $x \in dom(f)$.
But, $dom(f)=dom(g)$ and so:
$$x \in dom(g) \leftrightarrow <x,g(x)> \in g$$
From the hypothesis, $f(x)=g(x)$ and so $t=<x,f(x)> \in g$.
Therefore, $f \subset g$.
In the same way, we show that $g \subset f$.
Therefore, $f=g$.
Could you explain me the $\Leftarrow$ part of the proof? (Thinking)