What Does $$E^2_k|_{k=k_{res}}$$ Mean?

  • Thread starter Thread starter NODARman
  • Start date Start date
  • Tags Tags
    Physic Symbol
NODARman
Messages
57
Reaction score
13
Homework Statement
.
Relevant Equations
.
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
 
Physics news on Phys.org
NODARman said:
Homework Statement:: .
Relevant Equations:: .

Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
Just the k=k(res) after the vertical line. There is no definition in the textbook but in math does that mean from K=K(res) to something that can be dependent on a function or a situation?

Like definite integrals answer $$x|^3_2=3-2=1$$
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
 
$$
\left(\begin{array}{c}
D_{\psi \psi} \\
D_{\psi p}=D_{p \psi} \\
D_{p p}
\end{array}\right)=\left(\begin{array}{c}
\left.D \frac{\delta}{\gamma^2} E_k^2\right|_{k=k_{\text {res }}} \\
-\left.D \frac{\psi m c}{\gamma} E_k^2\right|_{k=k_{\text {res }}} \\
\left.D \frac{\psi^2 m^2 c^2}{\delta} E_k^2\right|_{k=k_{\text {res }}}
\end{array}\right),
\space where \space
E_k^2=\hbar \omega(k) n(k)=\int \frac{k^2 d \Omega}{(2 \pi)^2} \hbar \omega(\mathbf{k}) n(\mathbf{k})
$$
is energy density per unit of a one-dimensional wave vector and we assumed that ω(k) is an isotropic function of k.
we know that k is a wave vector (and the index "res" could be a doppler resonance for short) but what does it mean in that context (with E^2)?

This is from synchrotron radiation texbook.
Mark44 said:
Without additional context it's hard to say. However, I don't think it's like a definite integral. Can you post a clear picture of the textbook page where this appears?
I'll try to find the book.
 
NODARman said:
Hi, just wondering what this thing means.
$$
E^2_k|_{k=k_{res}}
$$
It means ##E^2_k## evaluated at ##k=k_{res}##.
 
  • Like
Likes Grelbr42, PhDeezNutz, PeroK and 1 other person
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top