- #1
Baela
- 17
- 2
If a Lagrangian has the fields ##a##, ##b## and ##c## whose equations of motion are denoted by ##E_a, E_b## and ##E_c## respectively, then if
\begin{align}
E_a=f_1(a,b,c)\,E_b+f_2(a,b,c)\,E_c
\end{align}
where ##f_1## and ##f_2## are some functions of the fields, if ##E_b## and ##E_c## are satisfied, then ##E_a## is automatically satisfied.
Does this tell us anything particular about the nature of field ##a##?
\begin{align}
E_a=f_1(a,b,c)\,E_b+f_2(a,b,c)\,E_c
\end{align}
where ##f_1## and ##f_2## are some functions of the fields, if ##E_b## and ##E_c## are satisfied, then ##E_a## is automatically satisfied.
Does this tell us anything particular about the nature of field ##a##?