- #1
stinlin
- 72
- 1
Hi all -
I'm working on the analysis of a siphon assemble for a water tank. I've attached a crude picture of what I'm working with.
As you can see, the water starts in the tank as given by the water table at about 8’-8” from the outlet pipe at the bottom. The entrance into the suction end is about 4’-10” from the outlet, while the highest point in the pipe rests at 6’-1.5” from the outlet. The larger pipe is 3” in diameter and the smaller is 1.5”. There is a stop check valve between the two.
The idea is that when the tank drains via the typical outlet pipe, there will still be about 3’ of standing water. It is proposed to siphon this water out into an overflow valve by opening the stop check valve after the water is done draining by other means.
At this point, I’ve ignored losses to figure what a cavitation height for the pipe bend would be (about 40’, so it’s no worry). While attempting to analyze the system in terms of “Will it work,” I get a bit confused. I can run iterations and such to determine pressures and velocities throughout the pipes, but I’m not sure how to figure out if the tank will drain via the siphon setup.
Maybe I don’t remember my fluid courses from school well enough, but I seem to not recall discussing siphons in this regard. I’m not asking for a solution to this problem as I enjoy figuring these things out, but I am asking that someone give me a bit of knowledge on how to classify this siphon as will or will not work. What kinds of things make a siphon work and not work? I’ve drained my pool by a hose and starting the flow by sucking the water out, but I’m not sure what’s actually going on in terms of the pressure differential and why the water gets up and over the hose in entirety at (just about) any water level.
Again, I’d really appreciate some sort of theoretical information that would be helpful in determining if this siphon is going to work or not, and what I can do to MAKE it work if I find it to be not capable of draining the tank up to the bottom of the suction end of the pipe. Thanks a bunch folks.
Edit: Talked to a guy here at the office and we approximate the valve as a double gate, not a stop check. :P
I'm working on the analysis of a siphon assemble for a water tank. I've attached a crude picture of what I'm working with.
As you can see, the water starts in the tank as given by the water table at about 8’-8” from the outlet pipe at the bottom. The entrance into the suction end is about 4’-10” from the outlet, while the highest point in the pipe rests at 6’-1.5” from the outlet. The larger pipe is 3” in diameter and the smaller is 1.5”. There is a stop check valve between the two.
The idea is that when the tank drains via the typical outlet pipe, there will still be about 3’ of standing water. It is proposed to siphon this water out into an overflow valve by opening the stop check valve after the water is done draining by other means.
At this point, I’ve ignored losses to figure what a cavitation height for the pipe bend would be (about 40’, so it’s no worry). While attempting to analyze the system in terms of “Will it work,” I get a bit confused. I can run iterations and such to determine pressures and velocities throughout the pipes, but I’m not sure how to figure out if the tank will drain via the siphon setup.
Maybe I don’t remember my fluid courses from school well enough, but I seem to not recall discussing siphons in this regard. I’m not asking for a solution to this problem as I enjoy figuring these things out, but I am asking that someone give me a bit of knowledge on how to classify this siphon as will or will not work. What kinds of things make a siphon work and not work? I’ve drained my pool by a hose and starting the flow by sucking the water out, but I’m not sure what’s actually going on in terms of the pressure differential and why the water gets up and over the hose in entirety at (just about) any water level.
Again, I’d really appreciate some sort of theoretical information that would be helpful in determining if this siphon is going to work or not, and what I can do to MAKE it work if I find it to be not capable of draining the tank up to the bottom of the suction end of the pipe. Thanks a bunch folks.
Edit: Talked to a guy here at the office and we approximate the valve as a double gate, not a stop check. :P
Attachments
Last edited: