What Function Models Yearly Sunrise Times in New York?

In summary, the conversation discusses finding a function to represent the data of sunrise times in New York over the course of a year. The data consists of week numbers and times in hours and minutes. The conversation mentions using a graphing calculator and suggests using a periodic function, such as a sine or cosine, to fit the data. The conversation also mentions converting the decimal notation of the times to better fit the function.
  • #1
jballer23
14
0
1. I was given times for the sunrise in new york for one year. The question was that I needed to find a function that would best represent the data. The first column is the week number and the second is the time in hours and min.
1 7.2
2 7.2
3 7.18
4 7.14
5 7.09
6 7.02
7 6.54
8 6.45
9 6.35
10 6.24
11 6.13
12 6.01
13 5.5
14 5.38
15 5.27
16 5.16
17 5.06
18 4.56
19 4.47
20 4.4
21 4.34
22 4.29
23 4.26
24 4.24
25 4.26
26 4.29
27 4.33
28 4.38
29 4.44
30 4.5
31 4.57
32 5.04
33 5.11
34 5.17
35 5.24
36 5.31
37 5.38
38 5.45
39 5.52
40 5.59
41 6.06
42 6.14
43 6.22
44 6.3
45 6.39
46 6.47
47 6.55
48 7.02
49 7.08
50 7.14
51 7.18
52 7.18



2. I'm not sure what my teacher was thinking on this problem she just asked us to take it home and figure it out anyway that we could.



3. I've tried using my graphing calculator to find a line of best fit but none of them worked all too well. I think that its got to be a periodic function because it would repeat farly close to the same time the next year. So I was thinking maybe a sin or cos fuction. I'm not sure. If you could help that would be more helpful than you could imagine
 
Physics news on Phys.org
  • #2
Don't get confused by the decimal notation: they're still times.
For example, 7.20 is actually 20 minutes past 7, so that's 7 and 1/3 hours after midnight. If you convert all the numbers in this way (7.2 -> 7.333, 6.14 -> 6.23333, etc) you will indeed get an almost perfect fit for a trig function.
 
  • #3
wouldn't plotting the actual graph help??
 
  • #4
this has an attached to it. Maybe that will help
 

Attachments

  • Graph Of sunrise.doc
    23.5 KB · Views: 207
  • #5
Did you look at my suggestion yet?
Then I get the list
Code:
1	7.333333333333334
2	7.333333333333334
3	7.3
4	7.2333333333333325
5	7.1499999999999995
6	7.033333333333332
7	6.9
8	6.75
9	6.583333333333333
10	6.4
11	6.216666666666667
12	6.016666666666667
13	5.833333333333333
14	5.633333333333333
15	5.449999999999999
16	5.266666666666667
17	5.1
18	4.933333333333333
19	4.783333333333333
20	4.666666666666667
21	4.566666666666666
22	4.483333333333333
23	4.433333333333333
24	4.4
25	4.433333333333333
26	4.483333333333333
27	4.55
28	4.633333333333333
29	4.733333333333334
30	4.833333333333333
31	4.95
32	5.066666666666666
33	5.183333333333334
34	5.283333333333333
35	5.4
36	5.516666666666666
37	5.633333333333333
38	5.75
39	5.866666666666666
40	5.983333333333333
41	6.1
42	6.2333333333333325
43	6.366666666666666
44	6.5
45	6.6499999999999995
46	6.783333333333333
47	6.916666666666666
48	7.033333333333332
49	7.133333333333334
50	7.2333333333333325
51	7.3
52	7.3
and you shouldn't have too much trouble throwing in a cosine.
 

FAQ: What Function Models Yearly Sunrise Times in New York?

1. What is a periodic function?

A periodic function is a mathematical function that repeats its values at regular intervals. This means that the same set of outputs will occur at regular intervals of inputs.

2. What is a period in a periodic function?

The period in a periodic function refers to the length of one complete cycle of the function. It is the distance along the x-axis from one point where the function begins to repeat itself to the next identical point.

3. How do you determine the period of a periodic function?

The period of a periodic function can be determined by finding the smallest positive value of x for which the function repeats itself. This value is known as the fundamental period.

4. Can a function be periodic if it does not repeat itself exactly?

Yes, a function can still be considered periodic if it has a pattern that repeats approximately or if it repeats with slight variations. This is known as quasi-periodic or almost periodic behavior.

5. What is the difference between a periodic and a non-periodic function?

A periodic function repeats its values at regular intervals, while a non-periodic function does not have any repeating pattern. Non-periodic functions may have random or chaotic behavior, and their graphs do not display any specific patterns.

Back
Top