- #1
lfdahl
Gold Member
MHB
- 749
- 0
Define the numbers $e_k$ by $e_0 = 0$, $e_k = \exp(e_{k-1})$ for $k \geq 1$. Determine the functions, $f_k$, for which
\[f_0(x) = x, \;\;\;\;f’_k = \frac{1}{f_{k-1}f_{k-2}\cdot\cdot\cdot f_0}\;\;\;\; for\;\;\; k \geq 1.\]
on the interval $[e_k, \infty)$, and all $f_k(e_k) = 0.$
\[f_0(x) = x, \;\;\;\;f’_k = \frac{1}{f_{k-1}f_{k-2}\cdot\cdot\cdot f_0}\;\;\;\; for\;\;\; k \geq 1.\]
on the interval $[e_k, \infty)$, and all $f_k(e_k) = 0.$