- #1
CaptainMarvel1899
- 28
- 3
Assume we have a diode . We connenct the negative terminal of the battery(anode) to the n type region and we connect the positive terminal of the battery to the p type region of the battery.The net force forces electrons to start flowing from the n type region to the p type region.As long as we increase voltage,we increase the propability of a bond to be broken(Si-B-) so the depletion region gets narrower.Once we reach 0.7V the depletion region gets so tiny that we assume it doesn't exist.Now if we connect the diode to a different way (reverse bias) electron flow until the depletion region will get wide enough so that it would oppose the external voltage(Battery).Since now the electric field is very big why don't the electrons flow from the p type to thw n type to reduce the electric potential?I know that during reverse bias condition there is a reduce in chemical potential , but in zero bias condition the chemical and the electric potential reach equillibrium at 0.7V so breakdown voltages 10V can't be explained . Help appreciated.