A What happens when you commute Sx and Sz in spin operators?

Dennmac
Messages
2
Reaction score
3
So we know [Sz, Sx] = ihbar Sy (S with hats on) so what happens if you get [Sx, Sz]? Is it the same result? Just trying to work out if I've gone wrong somewhere
 
Physics news on Phys.org
Dennmac said:
So we know [Sz, Sx] = ihbar Sy (S with hats on) so what happens if you get [Sx, Sz]? Is it the same result? Just trying to work out if I've gone wrong somewhere
In general ##[A, B] = - [B, A]##. The proof is as easy as they come.
 
  • Like
Likes Meir Achuz, vanhees71 and Dale
Facepalm...thank you! Letters are swimming in front my eyes, I think it's time for a break!
 
  • Like
Likes vanhees71, PeroK and Dale
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...

Similar threads

Back
Top