- #1
azatkgz
- 186
- 0
What's wrong with my solution?
[tex]\int \sqrt {\tanh x}dx[/tex]
for [tex]u = \tanh x\rightarrow du = \frac {dx}{\cosh^2x}[/tex]
[tex]\int \sqrt {\tanh x}dx = \int\sqrt {u}\cosh^2x dx = \int\frac {\sqrt {u}dx}{1 - u} = \int \frac {du}{2(1 + \sqrt {u})} - \int \frac {du}{2(1 - \sqrt {u})}[/tex]
for [tex]v = (1 + \sqrt {u})\rightarrow dv = \frac {du}{2\sqrt {u}}[/tex]and for [tex]z = (1 - \sqrt {u})\rightarrow dz = - \frac {du}{2\sqrt {u}}[/tex]
[tex]\int\frac {dv(v - 1)}{v} + \int\frac {dz(1 - z)}{z} = v - \ln v + \ln z - z[/tex]
[tex]\int \sqrt {\tanh x}dx = \ln (\frac {1 - \sqrt {\tanh x}}{1 + \sqrt {\tanh x}}) + 2\sqrt {\tanh x}[/tex]
[tex]\int \sqrt {\tanh x}dx[/tex]
for [tex]u = \tanh x\rightarrow du = \frac {dx}{\cosh^2x}[/tex]
[tex]\int \sqrt {\tanh x}dx = \int\sqrt {u}\cosh^2x dx = \int\frac {\sqrt {u}dx}{1 - u} = \int \frac {du}{2(1 + \sqrt {u})} - \int \frac {du}{2(1 - \sqrt {u})}[/tex]
for [tex]v = (1 + \sqrt {u})\rightarrow dv = \frac {du}{2\sqrt {u}}[/tex]and for [tex]z = (1 - \sqrt {u})\rightarrow dz = - \frac {du}{2\sqrt {u}}[/tex]
[tex]\int\frac {dv(v - 1)}{v} + \int\frac {dz(1 - z)}{z} = v - \ln v + \ln z - z[/tex]
[tex]\int \sqrt {\tanh x}dx = \ln (\frac {1 - \sqrt {\tanh x}}{1 + \sqrt {\tanh x}}) + 2\sqrt {\tanh x}[/tex]