- #1
congtongsat
- 3
- 0
Problem:
(i)A[tex]\subseteq[/tex]B [tex]\Leftrightarrow[/tex] A[tex]\cup[/tex]B = B
(ii) A[tex]\subseteq[/tex]B [tex]\Leftrightarrow[/tex] A[tex]\cap[/tex]B = A
and
For subsets of a universal set U prove that B[tex]\subseteq[/tex]A[tex]^{c}[/tex] [tex]\Leftrightarrow[/tex] A[tex]\cap[/tex]B = empty set. By taking complements deduce that A[tex]^{c}[/tex][tex]\subseteq[/tex]B [tex]\Leftrightarrow[/tex] A[tex]\cup[/tex]B = U. Deduce that B = A[tex]^{c}[/tex] [tex]\Leftrightarrow[/tex] A[tex]\cap[/tex]B = empty set and A[tex]\cup[/tex]B = U.
Can't wrap my head around the last question at all. The i and ii seem simple but I'm just not getting it to work.
(i)A[tex]\subseteq[/tex]B [tex]\Leftrightarrow[/tex] A[tex]\cup[/tex]B = B
(ii) A[tex]\subseteq[/tex]B [tex]\Leftrightarrow[/tex] A[tex]\cap[/tex]B = A
and
For subsets of a universal set U prove that B[tex]\subseteq[/tex]A[tex]^{c}[/tex] [tex]\Leftrightarrow[/tex] A[tex]\cap[/tex]B = empty set. By taking complements deduce that A[tex]^{c}[/tex][tex]\subseteq[/tex]B [tex]\Leftrightarrow[/tex] A[tex]\cup[/tex]B = U. Deduce that B = A[tex]^{c}[/tex] [tex]\Leftrightarrow[/tex] A[tex]\cap[/tex]B = empty set and A[tex]\cup[/tex]B = U.
Can't wrap my head around the last question at all. The i and ii seem simple but I'm just not getting it to work.