- #1
George Wu
- 6
- 3
- TL;DR Summary
- In peskin P102 ,it mentions spatial wavefunction, I don't know what does it means exactly.
My understanding is:
$$\phi (\mathbf{k})=\int{d^3}\mathbf{x}\phi (\mathbf{x})e^{-i\mathbf{k}\cdot \mathbf{x}}$$
But what is ##\phi (\mathbf{x})## in Qft?
In quantum mechanics,
$$|\phi \rangle =\int{d^3}\mathbf{x}\phi (\mathbf{x})\left| \mathbf{x} \right> =\int{d^3}\mathbf{k}\phi (\mathbf{k})\left| \mathbf{k} \right> $$
where ##\left| \mathbf{x} \right> ## and ##\left| \mathbf{k} \right> ##are the eigenvectors of operater ##\mathbf{X}## and##\mathbf{K}##
In qft, ##\left| \mathbf{k} \right> ##is still the eigenvector of ##\mathbf{K}=-\int{d^3}x\pi (\mathbf{x})\nabla \phi (\mathbf{x})=\int{\frac{d^3k}{(2\pi )^3}}\mathbf{k}a_{\mathbf{k}}^{\dagger}a_{\mathbf{k}}##
However what about ##\left| \mathbf{x} \right> ##?
My question is:
Is there any proper definition of ##\left| \mathbf{x} \right> ##?
Can ##|\phi \rangle ## still be written as:
$$|\phi \rangle =\int{d^3}\mathbf{x}\phi (\mathbf{x})\left| \mathbf{x} \right> $$(maybe with some factors)?
If not, what does spatial wavefunction ##\phi (\mathbf{x})##mean?
Last edited: