- #36
MaWM
- 93
- 0
Skhandelwal said:Again, I still don't get "fast enough" I mean I know what you mean by it...but mathematically, what is the rate at which something decreases which makes it have an asymptote? Personally, I feel an acceleration will result in it failing the vertical line test and thus qualifying it as nonfunction. So how do we describe that rate? Is that some derivative of acceleration? If yes then which? This is all very confusing.
Nope, an increasing slope is not enough. It will still take infinitely many xs before the slope is vertical. Nor is having the slope increasing at an accelerting rate enough. In fact, even if *every* derivative of the function is increasing, that is still not fast enough. (functions like 2^x having increasing derivatives of all orders). Its hard to describe how fast a function like 1/x increases before it has an asymptote. Not only does the function itself become undefined at 0, but all of its derivatives do too. That is to say, not only does the magnitude of 1/x grow infinity fast near zero, but the magnitudes of all of its derivatives also grow infinitly fast. So, the kind growth required to have an asymptote is fast beyond the capability of being describable by any sort of derivative.