- #1
Abrain
- 8
- 0
Do somebody knows anything about the Dirca's identity?
[tex]
\begin{equation} \label{Dirac}
\frac{\partial^2}{\partial x_{\mu}\partial x^{\mu}} \delta(xb_{\mu}xb^{\mu}) =
-4\pi \delta(xb_0)\delta(xb_1)\delta(xb_2)\delta(xb_3)
\end{equation}
[/tex]
here
[tex]xb[/tex], is the 4-vector [tex]$x-b$[/tex] in Minkowsky spacetime
[tex]\delta$[/tex] is the Dirac delta function
[tex]x_0 = -x^0, \quad x_1 = x^1, \quad x_2 = x^2, \quad x_3, = x^3[/tex]
Do you know where can i find some material about it?
Thanks!
[tex]
\begin{equation} \label{Dirac}
\frac{\partial^2}{\partial x_{\mu}\partial x^{\mu}} \delta(xb_{\mu}xb^{\mu}) =
-4\pi \delta(xb_0)\delta(xb_1)\delta(xb_2)\delta(xb_3)
\end{equation}
[/tex]
here
[tex]xb[/tex], is the 4-vector [tex]$x-b$[/tex] in Minkowsky spacetime
[tex]\delta$[/tex] is the Dirac delta function
[tex]x_0 = -x^0, \quad x_1 = x^1, \quad x_2 = x^2, \quad x_3, = x^3[/tex]
Do you know where can i find some material about it?
Thanks!