- #1
Slimy0233
- 167
- 48
- TL;DR Summary
- Need to know the kinetic energy of an electron moving with velocity v to find the total energy of an electron moving with velocity v
note:
m = relativistic mass
##m_o## = rest mass
v = velocity of the objectQuestion 1: If a particle is moving at relativistic speeds what would it's kinetic energy be?
I think it's ##K.E. = \frac{1}{2} m_o v^2## and my friend thinks it's ##K.E. = \frac{1}{2} \frac{m_o v^2}{\sqrt{1-\frac{v^2}{c^2}}}##
Who is right? Is it relativistic mass or rest mass?
Also, if an electron is moving with a velocity v, would it's total energy be
A fellow student said it's 1. $$E_{total} = mc^2 + \frac{1}{2} \frac{m_o v^2}{\sqrt{1-\frac{v^2}{c^2}}}$$
Now, I think it's either
2. ##E_{total} = m_o c^2 + \frac{1}{2} m_o v^2## or 3. ##E_{total} = mc^2##
Who is right?
m = relativistic mass
##m_o## = rest mass
v = velocity of the objectQuestion 1: If a particle is moving at relativistic speeds what would it's kinetic energy be?
I think it's ##K.E. = \frac{1}{2} m_o v^2## and my friend thinks it's ##K.E. = \frac{1}{2} \frac{m_o v^2}{\sqrt{1-\frac{v^2}{c^2}}}##
Who is right? Is it relativistic mass or rest mass?
Also, if an electron is moving with a velocity v, would it's total energy be
A fellow student said it's 1. $$E_{total} = mc^2 + \frac{1}{2} \frac{m_o v^2}{\sqrt{1-\frac{v^2}{c^2}}}$$
Now, I think it's either
2. ##E_{total} = m_o c^2 + \frac{1}{2} m_o v^2## or 3. ##E_{total} = mc^2##
Who is right?