- #1
Dustinsfl
- 2,281
- 5
I solved a DE for an electrical circuit where the input was a step input.
\[
\mathcal{U}(t) =
\begin{cases}
0, & \text{if } t <0\\
V, & \text{otherwise}
\end{cases}
\]
So the solved DE for \(t > 0\) is
\[
q(t) = VC + Ae^{\frac{-R}{C}t}.
\]
\[
\mathcal{U}(t) =
\begin{cases}
0, & \text{if } t <0\\
V, & \text{otherwise}
\end{cases}
\]
So the solved DE for \(t > 0\) is
\[
q(t) = VC + Ae^{\frac{-R}{C}t}.
\]
- How do I find the time constant?
- Also, \(q(t)\) is the charge. How can I go from \(q(t)\) to the current with respect to time?