- #1
karush
Gold Member
MHB
- 3,269
- 5
The following diagram show a solid figure ABCDEFGH. Each of the six faces is a parallelogram
The coordinates of A and B are A(7,−3,−5),B(17,2,5)
$\vec{AB} = \langle 17-7, 2+3, 5+5 \rangle = \langle 10, 5, 10 \rangle$
$|AB|= \begin{align*} \sqrt{ (17 - 7)^2 + [2 - (-3)]^2 + [5 -(-5)]^2} \end{align*}=15$
The following information is given
$\vec{AD}=\left[ \begin{array}{c} -6 \\ 6 \\3 \end{array} \right]$ , $|AD|=9$ , $\vec{AE}=\left[ \begin{array}{c} -2 \\ -4 \\4 \end{array} \right]$ , $|AE|=6$
I assume the following is Dot product
$A\cdot B = a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}$
Calculate $A\cdot B$
$-6\cdot -2+6\cdot -4+3\cdot 4=0$
thus $A\perp B$
more ? to come just seeing if this is correct:D
The coordinates of A and B are A(7,−3,−5),B(17,2,5)
$\vec{AB} = \langle 17-7, 2+3, 5+5 \rangle = \langle 10, 5, 10 \rangle$
$|AB|= \begin{align*} \sqrt{ (17 - 7)^2 + [2 - (-3)]^2 + [5 -(-5)]^2} \end{align*}=15$
The following information is given
$\vec{AD}=\left[ \begin{array}{c} -6 \\ 6 \\3 \end{array} \right]$ , $|AD|=9$ , $\vec{AE}=\left[ \begin{array}{c} -2 \\ -4 \\4 \end{array} \right]$ , $|AE|=6$
I assume the following is Dot product
$A\cdot B = a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}$
Calculate $A\cdot B$
$-6\cdot -2+6\cdot -4+3\cdot 4=0$
thus $A\perp B$
more ? to come just seeing if this is correct:D
Last edited: