- #1
autre
- 117
- 0
Homework Statement
Prove:
Let [itex]V[/itex] be a vector space over the field [itex]F[/itex] . If [itex]A,B,C\in L(V)[/itex] , then [itex]A\circ(B+C)=A\circ B+A\circ C[/itex] .
The Attempt at a Solution
Note that [itex]A\circ B\in L(V)[/itex] means [itex]A\circ B(\mathbf{v})=A(B(\mathbf{v}))[/itex]. Suppose [itex](\alpha_{jk})_{j,k=1}^{n}[/itex] and [itex](\beta_{jk})_{j,k=1}^{n}[/itex] are matrices of [itex]A[/itex] and [itex]B[/itex] and [itex](\gamma_{jk})_{j,k=1}^{n}[/itex] is a matrix of [itex]C[/itex] . Then, [itex]B+C=(\beta_{jk}+\gamma_{jk})_{j,k=1}^{n}[/itex] and [itex]A\circ(B+C)=A((B+C))=\sum_{i=1}^{n}\alpha_{ji}(\beta_{ik}+\gamma_{ik})[/itex]...
I'm a little stuck at this point. Any ideas?