- #1
Benzoate
- 422
- 0
Homework Statement
A certain oscillator satisfies the equation
x''+4x=0
x=[tex]\sqrt{3}[/tex]
|x'|= 2
show that , in subsequent motion,
x=[tex]\sqrt{3}[/tex] cos(2t)-sin(2t)
Deduce the amplitude of the oscillations. How long does it take for the particle reach its first origin?
Homework Equations
General equation: x(t)=A*cos([tex]\Omega[/tex]*t) + B*sin([tex]\Omega[/tex]*t)
x(t)=C*cos([tex]\Omega[/tex]*t-[tex]\gamma[/tex])
x''+[tex]\Omega[/tex]2*x=0
The Attempt at a Solution
x(t)=A*cos([tex]\Omega[/tex]*t) + B*sin([tex]\Omega[/tex]*t)
x'(t)= A[tex]\Omega[/tex]*sin([tex]\Omega[/tex]*t) + B*[tex]\Omega[/tex]*cos([tex]\Omega[/tex]*t)
x''(t)=A[tex]\Omega[/tex]2*cos([tex]\Omega[/tex]*t)-B*[tex]\Omega[/tex]2*cos([tex]\Omega[/tex]*t)
t=0 at x=[tex]\sqrt{3}[/tex} , therefore , A=[tex]\sqrt{3}[/tex]
[tex]\Omega[/tex]=2
x' = [tex]\sqrt{3}[/tex]*2*sin(2t)-2*B*cos(2t)
x''=[tex]\sqrt{3}[/tex]*4*cos(2t)+4*B*sin(2t)
x''= -4[tex]\sqrt{3}[/tex]
[tex]\sqrt{3}[/tex]*4*cos(2t)+4*B*sin(2t)=-4[tex]\sqrt{3}[/tex]
dividing 4 out on both sides of the equation I am left with:
[tex]\sqrt{3}[/tex]*cos(2t)+B*sin(2t)=-[tex]\sqrt{3}[/tex]
Not sure how to obtain B . Wait a minute, doesn't t=0 at |x'| so B= -1 since particle is projected towards origin. In addition , finding the period seems so trivial to me: tau=2*pi/omega and omega = 2 , therefore the period is tau= pi right?
Now isn't this the equation for amplitude: C=sqrt(B^2+A^2)
My book says the period is pi/6 , rather than pi. I know from the principal root and Euler Formula's I know that 2(cos(pi/6)-i*sin(pi/6))= sqrt(3)-i. not sure what that has to do with the time since the equation for period is : tau= 2*pi/omega