What is the angle PQR in triangle $PQR$?

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Angle
In summary, in triangle $PQR$, with $D$ as the midpoint of $QR$, if $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, the measure of $\angle QPD$ can be determined to be $60^{\circ}$ by using the given angles and properties of triangles.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.
 
Mathematics news on Phys.org
  • #2
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

From the given you know [tex]m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.[/tex]

You also know [tex]m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o[/tex].

Can you finish?
 
  • #3
Plato said:
From the given you know [tex]m\left( {\angle PDR} \right)\;\& \;m\left( {\angle DPR} \right)~.[/tex]

You also know [tex]m\left( {\angle PQD} \right)+m\left( {\angle QPD} \right)=135^o[/tex].

Can you finish?

Of course! But only because this is a challenge problem and I am not seeking for help for this problem, Plato!:eek:
 
  • #4
anemone said:
In triangle $PQR$, let $D$ be the midpoint of $QR$. If $\angle PDQ=45^{\circ}$ and $\angle PRD=30^{\circ}$, determine $\angle QPD$.

Hello.

1º)[tex]\angle DPR=180º-(180º-45º)-30º=15º[/tex]

2º) Draw the height from [tex]Q \ to \ \overline{PR}[/tex], getting the point [tex]O[/tex]

[tex]\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}[/tex]

3º) [tex]\angle PDO=60º-45º=15º[/tex]

4º) For 1º) [tex]\overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º[/tex]

5º) For 4º): [tex]\angle QPD=45º-15º=30º[/tex]

Regards.
 
  • #5
mente oscura said:
Hello.

1º)[tex]\angle DPR=180º-(180º-45º)-30º=15º[/tex]

2º) Draw the height from [tex]Q \ to \ \overline{PR}[/tex], getting the point [tex]O[/tex]

[tex]\sin 30º=\dfrac{1}{2} \ then \ \overline{QO}=\overline{QD}=\overline{DR}[/tex]

3º) [tex]\angle PDO=60º-45º=15º[/tex]

4º) For 1º) [tex]\overline{OP}=\overline{OD}=\overline{QO} \rightarrow{} \angle PQO=\angle QPO=45º[/tex]

5º) For 4º): [tex]\angle QPD=45º-15º=30º[/tex]

Regards.

WOW! That's a brilliant way to draw a line $QO$ such that it is perpendicular to $PR$ and everything immediately becomes obvious.

Bravo, mente oscura!
 

FAQ: What is the angle PQR in triangle $PQR$?

What is the angle PQR?

The angle PQR is the angle formed by three points, P, Q, and R, with vertex at point Q.

How do you determine the angle PQR?

To determine the angle PQR, you can use the formula: angle PQR = 180 - (angle P + angle R).

What is the unit of measurement for the angle PQR?

The unit of measurement for the angle PQR depends on the unit of measurement used for angles in the given context. It can be in degrees, radians, or other units.

What is the range of values for the angle PQR?

The range of values for the angle PQR is between 0 and 180 degrees, or 0 and π radians. This is because an angle cannot be greater than 180 degrees or π radians in a triangle.

Can the angle PQR be negative?

No, the angle PQR cannot be negative. It is always measured in a counterclockwise direction from the initial side to the terminal side, and thus, it can only have positive values.

Similar threads

Replies
3
Views
4K
Replies
9
Views
2K
Replies
17
Views
5K
Replies
13
Views
3K
Replies
2
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
2
Views
2K
Back
Top