MHB What is the angular velocity of a cylinder in rev/hr

AI Thread Summary
The discussion revolves around calculating the angular velocity of an offset press cylinder with a diameter of 13.37 inches and a linear speed of 16.53 ft/sec. Using the formula v = rω, the angular velocity is determined to be approximately 106,821 rev/hr, which some participants initially found surprisingly large. Clarification is provided on the relationship between revolutions and radians, noting that one revolution equals 2π radians. The conversation highlights the importance of understanding these units in equations. Overall, the calculation and unit conversion are confirmed as correct.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
An offset press cylinder has a $13.37\text {in}$ diameter.

The linear speed is $\displaystyle\frac{16.53 \text{ ft}}{\text{sec}}$

What is the angular velocity $(\omega)$ in $\displaystyle\frac{\text{rev}}{\text {hr}}$

from $v=r\omega$ then

$\displaystyle\frac{16.53\text{ ft}}{\text{sec}}
\cdot\frac{3600\text {sec}}{\text {hr}}
\cdot\frac{1}{6.685\text{ in}}
\cdot\frac{12\text { in}}{\text {ft}}
\approx\frac{106821\text{ rev}}{\text{hr}}$

this ans looks to large?
 
Mathematics news on Phys.org
Re: what is the angular v of a cylinder in rev/hr

You answer is correct...it is spinning many times per second and there are many seconds per hour. :D
 
Re: what is the angular v of a cylinder in rev/hr

well that cool...

I still don't know how to really deal with the words "rev" and "rad" in an equation?
 
Re: what is the angular v of a cylinder in rev/hr

karush said:
well that cool...

I still don't know how to really deal with the words "rev" and "rad" in an equation?
A rev(olution) is once around the circle. This corresponds to an angle of 2pi radians. Thus 1 rev = 2pi rad.

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top