- #1
Sudharaka
Gold Member
MHB
- 1,568
- 1
Hi everyone, :)
I think I need to refresh my memory about annihilators and quotient rings. Hope you can help me with the following example.
I want to find the annihilator of $a'$ and $b'$ of the quotient ring $R=\mathbb{Z}/(a'b')$ where $a',\,b'>1$. So if I go by the definition, $ann(a')=\{r\in \mathbb{R}\mid a'r=0\}=\{a' \mathbb{Z}+b' \mathbb{Z}+(a'\,b')\in \mathbb{R}\mid a'(a' \mathbb{Z}+b'\mathbb{Z})=0\}$Am I correct unto this point?
I think I need to refresh my memory about annihilators and quotient rings. Hope you can help me with the following example.
I want to find the annihilator of $a'$ and $b'$ of the quotient ring $R=\mathbb{Z}/(a'b')$ where $a',\,b'>1$. So if I go by the definition, $ann(a')=\{r\in \mathbb{R}\mid a'r=0\}=\{a' \mathbb{Z}+b' \mathbb{Z}+(a'\,b')\in \mathbb{R}\mid a'(a' \mathbb{Z}+b'\mathbb{Z})=0\}$Am I correct unto this point?