- #1
Dethrone
- 717
- 0
Let $F$ be the set of infinite sequences $(a_1,a_2,a_3...)$, where $a_i \in \Bbb{R}$ that satisfy
$a_{i+3}=a_i+a_{i+1}+a_{i+2}$
This describes a finite-dimensional vector space. Determine a basis for $F$.
$a_{i+3}=a_i+a_{i+1}+a_{i+2}$
This describes a finite-dimensional vector space. Determine a basis for $F$.