- #1
matsu
- 5
- 0
In the book "Cycles of Time" by Roger Penrose, there is a part of the explanation of entropy that I don't understand.
There are 10^24 balls, half of which are red and the other half blue.
The model is to arrange the balls in a cube with 10^8 balls on each edge.
It also divides the cube into smaller cubes of 10^5 on a edge, and defines a cube as uniformly purple
if the blue/red ratio in the cube is between 0.999 and 1.001.
Then comes the description of the values A and B below, which are approximate values that
are unclear how they were calculated.
(Value A)Number of states in which the entire 10^24 cube is uniformly purple: 10^23,570,00
0,000,000,000,000,000,000,000
(Value B)Number of states where the top half of the 10^24 cube is blue and the bottom half
is red: 10^46,500,000,000,000,000,000
I guess that the value A would be the value of (10^24)! but I have no idea how value B is calculated.
Can anyone give me a hint or help?
Note: The same question was asked in a previous thread, but the value B was not resolved.
https://www.physicsforums.com/threads/entropy-as-state-counting.963356/
There are 10^24 balls, half of which are red and the other half blue.
The model is to arrange the balls in a cube with 10^8 balls on each edge.
It also divides the cube into smaller cubes of 10^5 on a edge, and defines a cube as uniformly purple
if the blue/red ratio in the cube is between 0.999 and 1.001.
Then comes the description of the values A and B below, which are approximate values that
are unclear how they were calculated.
(Value A)Number of states in which the entire 10^24 cube is uniformly purple: 10^23,570,00
0,000,000,000,000,000,000,000
(Value B)Number of states where the top half of the 10^24 cube is blue and the bottom half
is red: 10^46,500,000,000,000,000,000
I guess that the value A would be the value of (10^24)! but I have no idea how value B is calculated.
Can anyone give me a hint or help?
Note: The same question was asked in a previous thread, but the value B was not resolved.
https://www.physicsforums.com/threads/entropy-as-state-counting.963356/