- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny\text{Whitman 8.7.18 chain rule} $
$$\displaystyle
I=\int { \left({t}^{3/2}+47\right)^3 \sqrt{t} } \ d{t}
={ \left({t}^{3/2}+{47}^{}\right)^4/6 } + C$$
$$\begin{align}
\displaystyle
u& = {t}^{3/2}+47&
du&=\frac{3}{2}{t}^{1/2} \ d{t}& \\
\end{align}$$
$$I=\frac{3}{2}\int\left({u}\right)^3 du $$
Don't see the answer coming from this?
$\tiny\text
{from Surf the Nations math study group}$
$$\displaystyle
I=\int { \left({t}^{3/2}+47\right)^3 \sqrt{t} } \ d{t}
={ \left({t}^{3/2}+{47}^{}\right)^4/6 } + C$$
$$\begin{align}
\displaystyle
u& = {t}^{3/2}+47&
du&=\frac{3}{2}{t}^{1/2} \ d{t}& \\
\end{align}$$
$$I=\frac{3}{2}\int\left({u}\right)^3 du $$
Don't see the answer coming from this?
$\tiny\text
{from Surf the Nations math study group}$
Last edited: