A What is the charge range for two N vacancies in a defect crystal?

  • A
  • Thread starter Thread starter jackwangsg
  • Start date Start date
  • Tags Tags
    Charged State
jackwangsg
Messages
1
Reaction score
0
TL;DR Summary
one vacancy have different charged state, for example one N vacancy range [0,+3], what the charge range for two N vacancies?
Hi, all
I am studying the defect formation energy calculations for defect crystal. One vacancy have different charged state, for example one N vacancy range [0,+3], what the charge range for two N vacancies? From chemistry, two N vacancies should be have max charge: +6. However, most reference still use the charge range [0,+3]. how to explain this ? Thank you
 
Physics news on Phys.org
I am not accustomed to your [0,+3]. Referring to https://en.wikipedia.org/wiki/Nitrogen-vacancy_center, I understand that at the vacancy 3 electrons come from neighboring C atoms, an electron pair come from N atom and frequently one electron come from outside to become ##NV^-## so total six electrons are involved. May I understand that your [0,+3] notation correspond to it ?
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

Back
Top